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PREFACE 

This report is part of a continuing research effort sponsored by 

the Defense Advanced Research Projects Agency (DARPA) and the U.S. 

Arms Control and Disarmament Agency (ACDA) to resolve technical issues 

concerning verification of nuclear test ban treaties. Volume I of 

this report presents a procedure for estimating station seismicity, 

noise, and magnitude-bias parameters. The noise parameters are re- 

quired inputs for the Seismic Network Assessment Program for Detection 

(SNAP/D). Volume II applies the procedure developed in Vol. I to the 

AEDS classified seismic network. 

An earlier identically titled version of this report (PSR Report 

1552, Vols. I and II, August 1985) derived station parameter estimates 

without accounting for the effect of the network detection criteria on 

station histograms. This version accounts for this effect and extends 

the results of the earlier report to station-amplitude histograms as 

well as station m^, histograms. 
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I.  INTRODUCTION 

This report develops a model that can be used in conjunction with 

single-station histogram data to estimate station seismicity and 

performance parameters. The histogram data generally consists of a 

plot of the number of earthquakes (from a restricted epicentral 

region) versus station mb, although a model for the treatment of 

station amplitude histograms for worldwide seismic data is also 

considered. The estimated station parameters consist of the mean 

noise level, u, the standard deviation of log noise, an, and the 

station magnitude bias, e. In order to estimate e, a similar his- 

togram of network detection performance corrected for maximum- 

likelihood (ML) mb magnitudes must also be available. 

The noise parameters u and on for each station are required 

inputs for the Seismic Network Assessment Program for Detection 

(SNAP/D) [Ciervo, et al., 1983]. Previously, their values were either 

estimated from measurements made on seismograms, or inferred from 

station detection thresholds. The empirical method does not generally 

ensure accurate replication of station performance in SNAP/D runs and 

the threshold-inferred estimates are generally reliable only for 

magnitudes near the station threshold. The procedure presented here 

is based on past station performance throughout the magnitude range 

experienced by the station and is thus believed to be an improvement 

on prior noise parameter estimation procedures. 

A similar treatment for a somewhat different problem has been 

presented by Kelly and Lacoss [1969] where ML estimates were derived 

for network performance parameters. However, for mathematical con- 

venience, a single-station Gaussian detection model was used to repre- 

sent the network detection process. Furthermore, the biasing effect 

of non-ML corrected network m^ estimates [see Ringdal 1976] was not 
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understood at that time. A similar effect on single-station seis- 

micity estimates is accounted for in the procedure derived here. In 

addition, single-station noise estimates are corrected for the usual 

four-station P-wave network detection criteria. 

The procedures developed here are illustrated using histogram 

data for the station HYB (Hyderabad, India) observing events from the 

Kamchatka/Kurile region of the USSR. The estimation procedures are 

also applied to the analysis of classified station m^ histograms as 

detailed in Vol. II of this report. However, station Ms histogram 

data was either too sparse or irregular to obtain reliable estimates, 

hence Vol. II presents Mg noise parameters from a previously published 

report [Hutchenson, 1983]. 

-2- 
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II.  NOTATION 

The following notation will be adopted for the discussion below: 

m   - operational m. 

fi   - m. observed at a single station 

a   - log amplitude (log A/T) 

a   - log amplitude observed at a single station 

N(m) - density for the expected number of earthquakes 

occuring with magnitude m 

o   - intercept of base e seismicity 

ß   - slope of base e seismicity 

u   - station mean noise amplitude 

e   « station magnitude bias 

r   - SNR required for station observation 

b(A) - b-factor (i.e., m - log (A/T) - b(A)) 

u' . - -b(A) + log u +- log r 

$   - unit normal probability distribution 

o   - standard deviation (s.d.) of m given m 
3 

a        - s.d.  of single-station log noise n .   . 
y.       - number of events in kth magnitude interval 

of station histogram 

i        - station index 

j        - epicentral region index 

-3- 
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III.  SEISMICITY MODEL 

It is generally accepted that logarithmic seismicity from a given 

region is linear with respect to seismic magnitude [Richter, 1958]. 

Thus, if N(m)A is the average number of seismic events per year occur- 

ing in the operational magnitude interval (m - A/2, m + A/2), then 

define o and 6 such that 

N(m) - ea+ßm  . (1) 

As in Kelly and Lacoss [1969], the actual number of events in an 

operational magnitude interval of width A is assumed to be Poisson 

distributed with mean N(m)A. Although, to the best of our knowledge, 

no formal justification has been offered for this assumption, it is 

reasonable since over a fixed time interval (say, one year), the 

occurrence of primary earthquakes parameterized on magnitude appear to 

satisfy the axioms of a nonhomogeneous Poisson process [Parzen, 1962]. 

Define the kth operational magnitude interval as (mk - A/2, mk + 

A/2), where A - mk+1 - m^, k - 1, 2, ..., and Xk as the random number 

of earthquakes with operational magnitude within the kth interval. 

Then the Poisson assumption implies that 

-N(m.)A [N(m )A]X 

f{*k  - x} - e   K    ^   x - 0, 1, 2, ... (2) 

where N(mk) is given by Eq. (1). 

At this point no claim has been made about the distribution of 

Yk, the number of earthquakes detected by a single station with ob
1- 

served magnitude in the interval (% - A/2, ük + A/2). However, using 

Eq. (2) and the results below, Appendix A proves that Yk is also Poisson. 

*For a discussion of true, operational, and observed 
magnitudes see von Seggern and Blandford [1976]. Unless otherwise 
noted, all magnitudes are m^ values with the subscript 
suppressed. 
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IV. SINGLES-STATION DETECTION 

The amplitude of a seismic signal arriving at a station may be 

considered to result from a series of random multiplicative 

(attenuation) effects on the seismic source amplitude. The central 

limit theorem would then imply that the log of the station amplitude, 

and hence observed magnitude m, is a Gaussian random variable 

given the operational magnitude m. Thus, 

?{mlm} = —1— e  A 3 ' (3) 
s 

where as is the log signal s.d. 

The log of the station noise amplitude at any time is also Gaus- 

sian since the noise is generally composed of signals from myriad 

minor seismic disturbances. Suppose a station detects a seismic 

signal with amplitude s when s/n > r where n is the noise amplitude 

and r is the signal-to-noise ratio (SNR) required for detection. The 

probability of detection would then be 

PD - ?{s/n > r} 

- ?{log s - (log n + log r) > 0}  . (4)* 

From the discussion above, log s and log n are Gaussian with expecta- 

tion and variance given by (in SNAP/D notation [Ciervo, et al., 1983]) 

E(log s) - log(A/T) 

V(log s) - a| 

E(log n) - log u 

The following notation is used: logio * log and loge » Jin. 
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and 

V(log n) 

where A is the mean signal amplitude in nm at the dominant wave period 

T. Seismologists prefer to use the quantity A/T because of its 

relationship to the energy in the wave train [Richter, 1958]. 

Thus, Eq. (4) becomes 

* 
log (A/T) - (log u + log r). 

,2^2 a + a 
s   n 

which is essentially Eq. (6) in the SNAP/D User's Manual, 

relationship between magnitude m and amplitude A is 

The 

(5) 

m - log(A/T) - b(A) (6) 

where b is the correction factor for epicentral distance A.. Defining 

u' .» -b(A) + log p + log r (7) 

Eqs. (6) and (7) allow Eq. (5) to be rewritten as 

PD'* 
m - u' 

, 2 A 2 
jo + ■ '0 s   n 

(8) 

Note that Eq. (8) is actually the probability of single-station 

detection conditioned on operational magnitude m. It is also useful 

to consider the detection probability conditioned on the observed 

magnitude m. In this case, the only uncertainty is the noise 

amplitude so that [Von Seggerq and Blandford, 1976], 
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m - p' 
' i JU | "u ~ * i  

where 2J denotes detection. 

?i2\m-*(^) (9) 
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V.  STATION HISTOGRAM MODEL 

Incremental histogram data is generally a plot of yk - the number 

of events detected with observed magnitude in the interval (mk - A/2, 

fik + A/2) where A - fik+1 - mk, k - 1, 2  The histogram data yk 

is a realization of the random variable Yk discussed on p. 4. The 

expectation of Yk, which is needed for station parameter estimation, 

is derived below from the seismicity and single-station detection 

models above. 

Recalling that N(m) is the average density of earthquakes at 

operational magnitude m, the average density of earthquakes arriving 

at a station with observed magnitude m is 

00 

/ f{m\m]  N(m) dm 

o 

Thus, the average density of earthquakes detected by a single station 

is, using Eqs. (1), (3), and (9), given by 

N(m) - ?{$\m}     f   ^{m|m} N(m) dm 

2 

* /* - A f _i 

s ea' + ßm $ IE Ü_V (10) 

where a' - a + 0.5 ß2a| and the approximation is due to the negligible 

effect of using 0 instead of •-• for the lower limit of the integral. 

Thus, as noted by von Seggern and Blandford [1976], the apparent 
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effect of using station histogram data to estimate seismicity is to 

introduce an upward bias of 0.5 ß2a§ into the intercept parameter a. 

The expectation of Yk is given by 

E(YR) - N(mk) A 

„ 10A'+Bm $(&  - V' \ (H) 

where, from Eq. (10), B - Un 10)~1ß and A' - (In 10)~1 (In A + a'). 

The unbiased histogram intercept is then A - (in 10)~1 (An A + o) so 

that the upward bias is A' -* A - 0.5 Un 10)~1ß2a§ « 0.5Un 10)B2al. 

Using the assumption that operational seismicity is Poisson, Appendix 

A proves that the Yk are Poisson random variables so that Eq. (11) is 

also the variance of Yk. 

The above discussion assumes that detection at an individual 

station is independent of the performance of the remaining stations in 

the network. In fact, the teleseismic detection of an earthquake 

generally requires at least a four^-station detection of the P-wave. 

The effect of ignoring network influence is to overestimate station 

noise levels. To properly account for the effect of the network 

detection criteria on the station i histogram, the probability of the 

remaining stations in the network (i.e., the "reduced network") 

providing at least a three-station P-wave detection must be con- 

sidered. With this approach, Eq. (10) becomes 

00 

N(m) - '?{Üs'|fl}      /       fi\  |mJ ?{fl|ml  N(m)  dm    . (12) 
o 

where $s and $N represent detection by station i and the reduced 

network, respectively. Since a closed form expression for ?{$$[■&} 

does not exist, SNAP/D is run over a range of m's for each reduced 

network. The integral in Eq. 12 is then computed numerically. 
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Note that each SNAP/D run in the numerical evaluation of Eq. 12 

requires the noise inputs u and a for each station in the reduced 

network. This requires an iterative process which begins with zerotn 

order u and o estimates* (from the assumption of independent station 

histograms) to determine ^{$fl|m} for each reduced network, which in 

turn are used to calculate first order u and o estimates, and so on. 

The detailed results of such an iterative process are shown in Vol. II 

of this report for the AEDS network. After five iterations, the es- 

timated values for y', a,  and A converged to fifth digit accuracy. 

The resulting u values converged to at least three digit accuracy. 

The parameter estimation procedure is described in Section VII. 

-10- 
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VI.  AMPLITUDE HISTOGRAMS 

The expressions derived in the previous section can be general- 

ized to station i log amplitude histograms provided the event's 

epicentral region, j, is known, along with the seismicity of the 

region. Denoting the quantity, log A/T, as 'a' for brevity, Eq. (6) 

yields 

a » m + b(A) 

The attenuation factor, b, depends on the angular distance Ajj between 

station i and epicenter j, which is indicated in the following 

development by bjj. Noting that the observed m^ is related to the 

operational m^ by a normally distributed deviation 6^j, with mean e^j 

and standard deviation Ogj, the above expression becomes 

Si - mi + bij + 6ij  • 

Eq.  (12) can be now be rewritten as 

NUk) -    S       f   NjCm) ^>{iN|m at j}   ^{ajmatj}   f{2s\\)    (13) 

where 

o +ß m 
N.(m)  - e J    J 

J 

-1/2 
Sk " bi.i  " ei.i  " m* 2 

?{a. |m at j} -  ■_ 1        e 
K /2ir o   . si 

o 
si 

and 

a    - b 

-11- 
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The necessary inputs for such a general expression would be aj, ß j, 

eji, and a3^.  The integral still must be evaluated numerically 

with f{ JN|m at j} computed by SNAP/D. 

There are three special cases for the amplitude histogram 

problem: 

1. ß. - ß for all j: with this assumption, ß can be estimated as in 

the earlier discussion by treating data as independent and 

averaging the fitted ß 's. The SNAP/D iterations and the 

numerical integral would still be required. 

2. Independent amplitude histograms are equivalent to 

?{$N|m at j} s 1.0 

and would remove the need for the SNAP/D iterations. 

3. Independent amplitude histograms with ß.-= ß would cause Eq. 13 

to become 

w 
j m 

) ?{& at  i|m at j} ?{^J& at  i} dm 

$ 
aR - v l) Lp' 

/m - m - e 
-1/2 (   

ß.m I o • 
J      e \ 81 

ii 

J      m 

dm 

/2Ü 
si 

(14) 

Where 

Defining 

ut - log vi + log rt 

V 
Q2      2 
6    asi 

ßeiJ 

-12- 



and 

a' - Ä-n Iff 
simplifies Eq. (14) to 

AC5VC110 

D2  2 

Hn 2>j a'.-ßb 
ij 

a'+ßä, 

W 'e 
$ 

a, - y. 
k   l 

(15) 

so that the functional form of the expected number of events in a bin 

is similar to the independent m^ case Eq. (10). In Eq. (10), a', yj, 

and aj would generally be regarded as free parameters to be estimated, 

while ß may be regarded as fixed or free. 
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VII.  PARAMETER ESTIMATION 

For ease of computation, a minimum chi^-square (MCS) estimation 

procedure was chosen. However, Appendix B proves the asymptotic 

(large Zjy^)  equivalence of MCS and ML estimates for this problem. 

For each station the MCS estimates are those that minimize the usual 

chi-square sum, i.e., 

/min   \ y 
(v- V2 

(16) 

where, in our case, the kth observation o^ - y^, and the expected 

observation e^ - N(mk), where N is given by Eq. (10) or (12) depending 

on whether independent or dependent station data is used . In prac- 

tice, the MCS sum is computed over all k for which e^ £ 1, where the 

parameter values at each stage of the iterative minimization process 

are used to compute e^. The technical properties of the MCS estimates 

(and their asymptotic equivalence to maximum likelihood (ML) es- 

timates) are detailed in Appendix B where the variance of the es- 

timates are also derived. 

Estimates for each station are calculated in three steps: (1) the 

minimization indicated in Eq. (16) is performed (under the assumption 

of independent station histograms) with all four parameters free; (2) 

the weighted average 

1   £ ",B. n  JLa     i x 

is calculated where Bj is the station i slope estimate from step (1), 

n^ is the number of events iq the station i histogram and n - Zn^; and 

(3) the minimization is repeated with three free parameters and B - F 

-14- 
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fixed for all stations. In the case of network dependent histograms, 

the iterative minimization procedure presented in Sec. V must be 

used. The rationale for setting B - B to obtain the final u', an, and 

A' estimates is that B is generally a better estimate of the opera- 

tional slope than an individual Bj. 

SNAP/D requires mean station noise levels in amplitude units (0-P 

in nm) and standard deviations in log amplitude units. Thus, if the 

minimization procedure described above provides u-'i and ani estimates 

for station i, then the SNAP/D station i noise inputs are, from 

Eq. (7), 

.. u'i + b(Ai) - log r 

and oni unchanged. 

The complications arising from network influences on m^ his- 

tograms, as discussed in Sec. V, imply that, in this case, an unbiased 

seismicity estimate may not be available from the MCS fit. However, 

the results of applying the procedure to AEDS station data (presented 

in Vol. II of this report) indicate a negligible change in A' 

parameter estimates. Thus, the expression for the unbiased station i 

intercept parameter, Ai » A'i ~ 0.5(£n 10)B2a2, as discussed in Sec. V 

for the case of independent m^ data, is also used as a reasonable 

approximation for the case of dependent data. Since SNAP/D calcula- 

tions are conditioned on the occurrence of a seismic event, seismicity 

is not a SNAP/D input for unassociated data, but estimation of the 

intercept parameter At permits estimation of station magnitude bias as 

discussed below. 

If network estimates of operational seismicity parameters ANET 

and BNET are available, then the MCS procedure would consist only of 

step (3) with Bj set equal to B^j.    In this case, the estimate of 

station magnitude bias would be 

' ANET " Ai 

-15- 
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this expression assumes that the station i was in operation 

continuously. If the periods for which station i is inoperable are 

known, an obvious modification of A^T could be made so that the e^ 

calculation would still be correct. The usual caution associated with 

using network histogram data to estimate seismicity must be observed: 

only MLE corrected network magnitude data can be used to obtain un- 

biased estimates of AJJET and BjjgT due to the "bulge" phenomena as- 

sociated with histograms based on network average magnitudes [Zavadil, 

et al., 1983]. Although SNAP/D can in principle accommodate correc- 

tions for station magnitude bias through use of the correction factor 

ejjk (in SNAP/D notation: i ■ station index, j = epicenter index, and 

k - wave index), in practice the required data acquisition and 

analysis would be formidable even when restricted to P-wave observa- 

tion for seismically active areas in the Soviet Union. 

-16- 
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VIII.  EXAMPLE 

The calibration procedure described above was applied to 1976- 

1980 histogram data compiled by F. Ringdal [Rivers, 1984] for Kam- 

chatka events observed by the station in Hyderabad, India. The ap- 

plication assumes independent station data for simplicity of discus- 

sion. This is clearly an approximation to the true case of network 

association. Figure 1 plots the data, the MCS fit (Eq. (6)), the 

unbiased station seismicity (-|oAi+Bm)» and» since no ML network mag- 

nitude data was available, hypothetical unbiased network seismicity 

(10
ANET+BNETm). Assuming BNET - "B, A - 0.1, and os » 0.35, the sta- 

tion magnitude bias 0.5(&n 10)B2o| is also indicated. Note that the 

apparent station seismicity bias refers to the "vertical" difference 

between apparent asymptotic (large magnitude) station seismicity 

(10
A'i+Bm) and tne unbiased station seismicity (10

Ai+Bm). On the 

other hand, the station magnitude bias refers to the "horizontal" 

difference between the unbiased station seismicity and the unbiased 

network seismicity (10
ANET+BNETm). 

The MCS estimates for HYB are 

u»   - 4.83 
an - 0.20 

A'   - 6.15 

with seismicity slope fixed at B - -0.89. Thus, SNAP/D noise 

parameters would be 

y - 10^' 
+ b<A) * l08 r 

- 7.,48 
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and an - 0.20 where b(A) - *3.78 is the Veith and Clawson [1972] 0 

entry for A- 68.82° and r - 1.5.    The unbiased seismicity intercept 

is 

A - A'  + 0.5Un 10)B2a| 

- 6.04 

km 
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Appendix A 

THE DISTRIBUTION OF OBSERVED MAGNITUDES 

This appendix will show that if X(m), the random number of 

earthquakes with operational magnitude in the interval [0,m), is a 

Poisson process, then YD(fi), the number of earthquakes detected by a 

single station with observed magnitude in [0,fl), is also Poisson. 

Hence, the histogram data Yk discussed on p. 1 of the text is a Pois- 

son random variable. 

Let X(m) be a Poisson process with density function 

A r~,\      _<r*6m Aim; - e     , 

where 6 > 0,me[0,»), and 5 - -ß, in the notation of Sec. III. X(m) 

denotes the total number of earthquakes with operational magnitude in 

the interval [0,m), and X(m) is the total number of earthquakes with 

magnitude bigger than m (i.e., magnitude in the interval (m,»)) . Both 

X(m) and X(m) are assumed to be Poisson processes, with respective 

mean value functions 

E[X(m)] - A(m) 

m 

/ 
A(s) ds 

o 

e° 
(l - e-fim) 

*  
X(m) is the Poisson process treated by Kelly and Lacoss [1969] 
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ECX(m)] - A(m) 

/  A(s) ds 

*m 

ea-6m 

In an interval Im- -^ m + •£-), the expected number of earthquakes 

is 

(m + - ] - A(m - - ] - /   ea 

<       2)        \       2)     li 
"6s ds 

m^2 

- .a-6m A ■ e    A 

Now to develop the distribution of Y(ft), the number of 

earthquakes with observed magnitude in [0,Ä), let T^ be the opera- 

tional magnitude of the i smallest earthquake recorded by the sta- 

tion, where r^ may be smaller or bigger than fl. Let ni denote the 

corresponding observed magnitude, so that 

^i " ni + ei ' 

where the measurement error ej is Gaussian with mean 0 and standard 

deviation og. 

Define the 0-1 valued function 

I: if  n + £ 2 
w(fl,n,e) 

"if  Ti + e > 

Then the itn earthquake is included in the Y(fl) count if f^ * fl, i.e., 

if w(fi, nj, e±) - 1, and otherwise not. Thus, Y(ffi) may be expressed 

as ' 
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Y(m) - 2^     w(fi'ni» ei) 

Clearly, Y(fl) is a nonnegative integer-valued random variable. 

The assertion that Y(fi) is again a Poisson process can be proved 

in several different ways, but we shall present a proof that is 

straightforward and intuitively appealing. 

First, we demonstrate a fairly well known lemma [Papoulis, 1984] 

relating the limiting distribution of a sum of independent Bernoulli 

(0-1 valued) random variables to a Poisson variate. 

Let xr x2, ..., xn, xn+1, .... be a sequence of independent 

random variables such that xL is 1 with probability pi and 0 with 

probability qL  - 1 - p^ Further, let 

n 

X - lim V* Pi <  " 
n ->• 00 ma^ n-*-a> 

i-1 

and assume that        max      p^-t-O as n-»■<». 
1SiSn 

Then we assert that Zn - / j r.^  converges (as n-»-») to a Poisson ran- 

i-1 

dom variable Z with mean X. 

To show this, we exhibit the characteristic function of each x± 

and of Z, and show consequently that the characteristic function of Zn 

converges to that of Z, thus establishing the lemma. 
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The characteristic function of the Bernoulli variable Xj is 

^(u) - E(e  11 

- pt e
Ju + qj 

(where j - /-T) and the characteristic function of the Poisson variate 

Z is 

♦2(u)  - E(ejuZj 

£• e*X>k 

Jukf L 
k! 

k-0 

e~* 
(xe^)k 

k! 
k-0 

eX(eJu-1) 

Now note that if Pj << 1, then 

p,(eju-1)        1u 
i L = 1 '+ Pi(eju-1) 

PieJU + <U 

- «J^Cu) (A.1) 

and so 

-23- 



AC5VC110 

n 

Jin 

i-1 

(by independence of Xj) 

n 

2     £n(PieJU +  1  " Pi) 
i-1 

±   [p.P'-i)*^] 
n n 

i-1 i-1 

n-*-°° X(e ju . 1) (A.2) 

where 8^0 as p^O. Hence <J>Z (u)—*-4>z(
u)» establishing the lemma. 

To show that if X(m) is Poisson, then so is Y(m), begin by par- 

titioning the magnitude axis CO,») into consecutive intervals 1^ - 

(aif oti+1) of fixed length (or mesh) Act - ai+1 - ait as in Fig. A.1. 

Let AX£ denote the number of earthquakes with operational magnitude in 

the interval Ij and let AY(ffi, ctj) denote the corresponding contribu- 

tion to the sum Y(ft) due to the error in measuring the operational 

magnitudes of the earthquakes in interval Ij. Thus, we may write Y(fl) 

as 

Y(ffi) y^ AY(m, 0i) 

-H- 
0 a, a2 at  a i   «I»J 

Figure A.1 

-2k- 
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If the mesh Aa of the partition is small, then, within probabil- 

ities of order Aa, the random variable AXj takes the value 0 or 1, and 

PCAXj - 1) = Ua^ Aa 

where, as before, X(m) - e°"5m is the intensity function of the Pois- 

son process X(m). 
If LXi  - 0, then necessarily AY(m, aL) -  0. But if AXj - 1, then 

AY(fi,  0l)  - 1   <—>    fi£    - i\iL 
+ Ht * fi 

or    e^    S fi - n^ 

where the operational magnitude nj, lies in interval Ij. 

Thus, approximately, given that AXj^ - 1, 

pfAYCm.cXi) - 1 | AX± - ij = W  q "M 

since the measurement error is Gaussian with mean 0 and standard 

deviation o0. Hence the unconditional probability is 

>[&Y(fl, 04) - l] = X(Oi) Aa *f— -j 

Now, the random variables AY (ft, c^) take the values 0 or 1 and 

are independent, because the AXj are independent (Poisson variates in 

nonoverlapping  intervals)  and the measurement errors  ea  are 

independent. Therefore, by the lemma, as the mesh AOMO, the sum Y(ffi) 

- I  AY(fi, a,)  tends to a Poisson variate with mean 
i     x 

lim  V* XCoi)*!? —) Aa - /  A(m) $( Jdm 
AcwO L-d \ os /     Jo \ °s /       (A.3) 
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The above argument also illustrates that for two nonoverlapping 

intervals (0, S) and (ft, ft + t), where § < ft, the variates Y(§) and 

Y(ffi + t) - Y(fl) are independent, and, of course, Poisson. Hence Y(ft) 

is also a Poisson process, as was to be shown. 

From Eq. (A.3)t we may write the mean value function for Y(ft) as 

/ "■'•(Hr) M(ft) -  I  A(m)$[ \ dm 

and the corresponding intensity function is 

(ffi-m)2 
CD -  - i .i- 

y(ft) - — M(ffi) -    /     e°+am -4= e      2°s        dm 
dm / O<V2TT 

o s 

(A.4) 

00 

I     N(m) ?{&\m] dm  , 

as  in Section V,  pg.  7. 

Finally, we consider the effect of the probability of detection 

/ft - u'1 

W|ft} =$   
V   °n 

on the process Y(fl).  As before, partition the magnitude axis into 

disjoint intervals Ij - (Sit 8i+1) with mesh AS - Si+1 - Sif and let 

AS be so small that within probabilities of order AS the number LY^  of 

occurrences of earthquakes with measured magnitude in Ij is 0 or 1. 

If LYi  - 0, define AYD(fi, Sj) - 0. 

If AYj - 1, define 

AYD(fi, Sj) - 1* <—► the event in Ij is detected. 
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Thus, given AYj - 1, the conditional probability that AYD(fil, a^)  is 1 

is 

P AYD (ft, Sj) - 1 | AYj « 1  - ?{2\m (A.5) 

and as developed earlier 

P(AYt « 1) = yCoj) Ao . (A.6) 

The total number of earthquakes detected in [0, m) is 

YD(m) - ^ AYD(m, ai) . 

i 

And from Eqs. (A.5) and (A.6), 

P|AYD(m, BLL)  - 11 a uCa^^la^ Aat 

Thus, as the mesh Ao->-0,the total number of earthquakes with magnitude 

in [0, m) that are detected is a Poisson process with mean 

ft 

MD(ffi) - f    u(x) ?{2)\x}  dx (A.7) 

*o 

In an interval (' ffi - -^r, m + -j- j the number of earthquakes that are 

detected is given by 

1+? 
Mö(m + \\ - MD(fi - -J-) -    /"        y(x) ?{$|x} dx 

ft-* 
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in 4 
y(x) dx 

Finally, by differentiating Eq. (A.7), we obtain the density (see 

Eq. (A.M) for y(ft)) for the detected process, 

yD(ft) - y(fl) ?{2)\m 

CD 

- Miß} y 

- N(fi) , 

as in Eq. (10) of Sec. V of the text. 
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Appendix B 

MINIMUM CHI-SQÜARE AND MAXIMUM LIKELIHOOD 

IN FITTING A POISSON PROCESS MODEL 

In this appendix, we assume that count observations can fall into 

any one of K bins or magnitude intervals, where each bin has the same 

width A. Let 

yk - number of observed counts in k  bin 

ek - expected number of counts in k1,    bin 

' Xk(6) 

for each k, k - 1, ..., K, where mk is the midpoint of the kth bin, 

9 = (6, y, an), 8' - (a, 8), and the definition of h(.) is clear from 

the above. Note Y = ea. 

Assuming that y^, ..., yK are independent Poisson random vari- 

ables, where yk has mean Ak, then N = Eyk is also Poisson with mean 

ZAk. Moreover, the joint density function (or likelihood function) of 

y1t ..., yK is 

k e""kA y* 
L(8') - f(y1t ..., yK) =  *— (B.1) 

k K 

The density function for the sum N is 
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k K 

(l ^ 
P(N = n) -   ,    for n = 0, 1  

n! 

The log of the likelihood function from Eq. (B.1) is then 

log L--Uk + Iykinik-nn yk! 

- -Z Yhdn^  6)  + Z yk Un Y + in h(mk,  6)1  - Z Jin yR! 

(B.2) 

MAXIMUM LIKELIHOOD ESTIMATION (MLE) 

The maximum likelihood estimate (MLE) §' for 9' is obtained by 

choosing §' to maximize L(6'), or equivalently log L(8'). If L(6') is 

differentiable with respect to 6' (as in our model), the MLE 9' is 

obtained by solving the equation 

3 
  log L(8») - 0 . (B.3) 
39' 

By differentiating Eq. (B.2) with respect to Y, we obtain 

3 log L 1 
0 =   - - Z h(mk, 8) + - Z yk , 

3Y      k   K     Y k K 

or 

Z yk 
k k       N 

Y-    (B.H) 
Z h(mk, 0)  Z h(mk, 8) 

Substituting this expression for Y in the log likelihood (B.2), we 

obtain (aside from a constant depending on N, but not depending on 9) 

the log likelihood for the conditional distribution of (y-j, ... , yK) 

given N - Z yk, which is multinomial with parameters N, ir-|(9), ..., 

irK(9), where for 1 £ k £  K, 
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h(mk, 8)    Ak(6') 
irw(8) -  •  -  ■—- K     Z h(m1t 9)  Z \AB') 

This version of the log likelihood may then be maximized (by solving 

for 9 log L/30 - 0) to obtain the MLE estimates for 0 = (B, y, an). 

MINIMUM CHI-SQUARE ESTIMATION (MCSE) 

Although the asymptotic properties of MCS are well known for the 

multinomial case [Cox and Hinkley, 1977 and Rao, 1957], they do not 

seem to be not as well known for the Poisson case. Since we were not 

able to find in the literature an exact reference for the Poisson 

case, we present the development here. 

For the Poisson model, the MCS estimate is achieved by minimizing 

u ek 

k      K (B.5) 

where ek is the expected number of counts in bin k, which in this 

model is Ak(0'). 

The MCSE is obtained by solving the equation 

3 
 S(6') - 0 . 
30' 

We will show that under suitable regularity conditions, the solution 

of 

3 
— S(Y) - 0 
3Y 

yields an estimate Y which is asymptotically equivalent to the ML 
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estimate Y, and that substitution of the resulting estimate into 

Eq. (B.5) yields (approximately) the MCSE for the multinomial dis- 

tribution, which is known to be asymptotically equivalent to the MLE. 

Now the MCS criteria is 

S(6') 
[yk - Yh(mk, 8)) 

Yh(mk, 6) 
(B.6) 

Letting hk - h(mk, 9) and differentiating with respect to Y, we obtain 

3S 

3Y ■ £ 
-2(yk - Yhk) h^ Y - (yk - Yhk)V 

 ^  

Y2h£ - y2 

E R* 
hence 

1/2 

is the MCS estimate of Y, for fixed 9. 

The ML estimate Y is unbiased, since 

W- 
N 

Z h„ 

Y I h. 

I  hL 

Its variance (since N is Poisson) is 
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N 

Z hk 

1 
Y Z hL 

(J h'); 

Z hk 

The variance becomes small if Z hk is large, which we shall assume. 
k K 

To evaluate the mean of the MSCE Y, let 

I   & 
z . JS—ÜS- . 

Z h, 
j  J 

Since yk is Poisson with parameter Y hk, 

E (y£) - Y2 hi  + Y \ . 

Thus 

E(Z) _,    k V    »k      ) 
jIhJ 

«Y2 + 
K 

Z hk 
k    K 

-Y2 fl ♦ — 
Y Z hk 

k K 

To first order, then, since Y - Z1/2, 
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1/2 
K 

E Y = Y M +   
Y Z hk 

k K 

K 
Y I 1 + 

2 Y Z hu 
k K 

where the last approximation follows from the Taylor expansion of 

vTöcT 
K -1 If   goes to 0 (or K  Z hi, grows large) the bias term goes 

[h,. k K 

k K 

to zero. 

It may also be shown, using the first four moments of the Poisson 

distribution, that to first order, 

Y 
VarY =   , 

Z hk 
k K 

just as for the MLE Y. 

Thus, if K and I h^ grow large in such a way that y/Z h, 

and K/Z h. decreases toward zero, Y and Y will be asymptotically 

equivalent. 

Writing 

Y - Y + e(Y) 

N 

Z hk 
k K 

+ e(Y) 

where the error e(Y) depends on Y and on Z hk, we replace Y by 

Y - N/Z h,, + e(Y) in Eq. (B.6), and obtain 
k K 
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hk 

s(e)  ^ 

E h, 
j J 

N h,. 

Eh,      K 

j  J 

But if |e(Y) hk| is small for each k, this yields (approximately) the 

MCS criterion for the multinomial distribution of (y1 ..., yK) given 

N. From Ferguson [1958], the resulting MCS estimate for 8 « (8, y, on) 

is asymptotically equivalent (as N grows large) to the ML estimate 

(i.e., 8 is Best Asymptotically Normal, or BAN). 

The asymptotic equivalence of MCS and ML estimates allow us to 

use the usual MSE approach [Cox and Hinkley, 197*0 to evaluate the 

asymptotic variance for the MCS estimates. Thus, we evaluated 

32 
„ log L(8») 

38'* 
8' - 8' 

where 8' is the MCSE, and inverted this matrix to achieve the es- 

timated variance-covariance matrix for 8'. Elements of this matrix are 

given below (with a sign reversal): 

32(logL(8')) 

17" 

32(logL(8')) 

da 3ß 

32(logL(8')) 

3a 3y 

^-*  \ 1  a+ßmj /mi  - y\ 

*f      \ °n 6    * \ an / 
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a2dogL(er)) 
3a do, n 

■  E mi - v    o+Bra 
*n    »  e 
°n 

1 fe)! 
32(logL(9')) 

""JP  

32(logL(6')) 

38 3u 

32(logL(6')) 

36 3o_ 

-Bi
2 e0+ßBl  ^A 

1 I0"* \   °"   / 

V"^ I  m1(mi - »)    a+Bmj     /mi - u\ 

1 I "5 ' \   °n    / 

32(logL(6' )) T"^    I  m1 - u    o+Bm 

3y< LJ "(V) 

,0 

32(10gL(6')) 

3v 3on 

1    o+Bm 

'♦(V)'-(^r) 

"f6 
32(logL(6')) V-»   I    «I - H c 

o+Bm, 

3 o' 
1 

^"l " u)       N   -n 

••Mt-fd] 

ea 
C-v) 
-36- 
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In summary, we have shown that 

1. The MLE Y is unbiased for Y, with variance inversely propor- 

tional to E hk; thus Y converges to Y in probability if E hk 

grows large. 

2. The MCSE Y is biased, with bias 

K 
b(8) 

2 E h. 

As K ' Eh,, grows large, the bias decreases toward zero. The 

variance of Y is, to first order Y/E hk, just as for the 

MLE. 

3. We may write Y - Y + e(Y), where the error term E(Y) is the 

sum of two components 

K 
i) the bias term b(9) -   

2 E hk 
k K 

Y 
ii) a mean zero random component with variance   

E hk 
k K 

Asymptotically as E h,, grows large and E h.,/K grows large, 

the error e(Y) becomes small. 

4. Replacing Y by Y in the equation for the MCSE criterion 

yields, because of continuity, a solution that is asymptoti- 

cally equivalent to the MLE for 0 =• (f$, u, on). 
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